122 research outputs found

    A graph-theoretic framework for algorithmic design of experiments

    Get PDF
    In this paper, we demonstrate that considering experiments in a graph-theoretic manner allows us to exploit automorphisms of the graph to reduce the number of evaluations of candidate designs for those experiments, and thus find optimal designs faster. We show that the use of automorphisms for reducing the number of evaluations required of an optimality criterion function is effective on designs where experimental units have a network structure. Moreover, we show that we can take block designs with no apparent network structure, such as one-way blocked experiments, row-column experiments, and crossover designs, and add block nodes to induce a network structure. Considering automorphisms can thus reduce the amount of time it takes to find optimal designs for a wide class of experiments

    Dynamical system analysis and forecasting of deformation produced by an earthquake fault

    Full text link
    We present a method of constructing low-dimensional nonlinear models describing the main dynamical features of a discrete 2D cellular fault zone, with many degrees of freedom, embedded in a 3D elastic solid. A given fault system is characterized by a set of parameters that describe the dynamics, rheology, property disorder, and fault geometry. Depending on the location in the system parameter space we show that the coarse dynamics of the fault can be confined to an attractor whose dimension is significantly smaller than the space in which the dynamics takes place. Our strategy of system reduction is to search for a few coherent structures that dominate the dynamics and to capture the interaction between these coherent structures. The identification of the basic interacting structures is obtained by applying the Proper Orthogonal Decomposition (POD) to the surface deformations fields that accompany strike-slip faulting accumulated over equal time intervals. We use a feed-forward artificial neural network (ANN) architecture for the identification of the system dynamics projected onto the subspace (model space) spanned by the most energetic coherent structures. The ANN is trained using a standard back-propagation algorithm to predict (map) the values of the observed model state at a future time given the observed model state at the present time. This ANN provides an approximate, large scale, dynamical model for the fault.Comment: 30 pages, 12 figure

    Estimating travel reduction associated with the use of telemedicine by patients and healthcare professionals: proposal for quantitative synthesis in a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A major benefit offered by telemedicine is the avoidance of travel, by patients, their carers and health care professionals. Unfortunately, there is very little published information about the extent of avoided travel. We propose to undertake a systematic review of literature which reports credible data on the reductions in travel associated with the use of telemedicine.</p> <p>Method</p> <p>The conventional approach to quantitative synthesis of the results from multiple studies is to conduct a meta analysis. However, too much heterogeneity exists between available studies to allow a meaningful meta analysis of the avoided travel when telemedicine is used across all possible settings. We propose instead to consider all credible evidence on avoided travel through telemedicine by fitting a linear model which takes into account the relevant factors in the circumstances of the studies performed. We propose the use of stepwise multiple regression to identify which factors are significant.</p> <p>Discussion</p> <p>Our proposed approach is illustrated by the example of teledermatology. In a preliminary review of the literature we found 20 studies in which the percentage of avoided travel through telemedicine could be inferred (a total of 5199 patients). The mean percentage avoided travel reported in the 12 store-and-forward studies was 43%. In the 7 real-time studies and in a single study with a hybrid technique, 70% of the patients avoided travel. A simplified model based on the modality of telemedicine employed (i.e. real-time or store and forward) explained 29% of the variance. The use of store and forward teledermatology alone was associated with 43% of avoided travel. The increase in the proportion of patients who avoided travel (25%) when real-time telemedicine was employed was significant (<it>P </it>= 0.014). Service planners can use this information to weigh up the costs and benefits of the two approaches.</p

    Design of Experiments for Screening

    Full text link
    The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs and systematic fractional replicate designs. Generic issues of aliasing, bias and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are discussed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modelling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared

    Local Optima Networks of the Permutation Flow-Shop Problem

    Full text link
    International audienceThis article extracts and analyzes local optima networks for the permutation flow-shop problem. Two widely used move operators for permutation representations, namely, swap and insertion, are incorporated into the network landscape model. The performance of a heuristic search algorithm on this problem is also analyzed. In particular, we study the correlation between local optima network features and the performance of an iterated local search heuristic. Our analysis reveals that network features can explain and predict problem difficulty. The evidence confirms the superiority of the insertion operator for this problem
    • 

    corecore